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Representation of spatial proximity for various 
spatial data using Geometric methods 
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Abstract— Co-location pattern is the subsets of Boolean spatial features whose instances are often located in close geographic proximity. Representa-
tion of proximity in geospatial data using conventional data models is not consistent. Neighbourhood is a major challenge and key part of spatial co-
location pattern mining. Neighbourhood may be defined using topological relationship, metric relationship and combination of both. In most of the co-
location mining, the neighbourhood was defined by user. In this paper, we are proposing Delaunay triangulation approach to model the neighbourhood 
between the objects. Delaunay triangulation is a structure representing the neighbourhood of objects in a succinct and unambiguous manner [7]. This 
approach eliminates the parameters from the user to define the neighbourhood of objects and avoid multiple test and trail repetitions in the process of 
mining. A Delaunay triangulation based co-location mining algorithm is developed to mine co-location patterns from complex spatial data. 
 
Index Terms— Voronoi diagrams, Dynamic Delaunay triangulation, Spatial Data Clustering. 

 

——————————      —————————— 

1 INTRODUCTION                                                                     
S per the requirement of fast growing world & the 
ever increasing applications the modelling & simula-
tion of spatial processes is widely used. The applica-

tions such as: water resource management, forest fire moni-
toring, terrestrial survey & many more such applications 
where we use it. So in case of representation of proximity in 
geospatial data using the old data models that we are using 
for the time is not so consistent.  So here the concept of De-
launay triangulation arises to find the neighborhood be-
tween the objects. In spatial co-location pattern mining 
neighborhood is a major challenge & key part. The neigh-
borhood can be define by many relationship such as the  
distance between that two objects, the estimated time taken 
to reach that object  or combination of  both can be used. In 
Delaunay triangulation we are avoiding the user inputs so 
that user needs not to worry about the relationship between 
the objects.  This approach even avoids multiple test and 
trail repetitions in the process of mining. As the spatial data 
is very much complex compared to others it’s mining can 
be easily done through Delaunay triangulation. 
As we know Data mining is a process to extract implicit, 
nontrivial, previously unknown and potentially useful in-
formation (such as knowledge rules, constraints, regulari-
ties) from data in huge databases. As the enormous growth 
of a firm the data related with it is also increasing which 
leads to large databases. Then successively there is a need 
to find the perfect tool that will transform the raw data & 
will represent it in the form of useful information & 
knowledge accurately & in timely manner. Spatial data 
mining as a subfield of data mining refers to the extraction 
from spatial databases of implicit knowledge, spatial rela-
tions or significant features or patterns that are not explicit-
ly stored in spatial databases. The large amount of spatial 
data obtained from satellite & the geographic information 
system (GIS) should be explored in detail. The difficulties 
that we face in spatial data mining arise because of the fol-
lowing issues. 1) The classical data mining is designed to 
process numbers and categories & spatial data is more 
complex and includes ex-tended objects such as points, 
lines and polygons. 2) The classical data mining works with 

explicit inputs, whereas, spatial predicates and attributes 
are often implicit. Finally, classical data mining treats each 
input independently of other inputs, while spatial patterns 
often exhibit continuity and high autocorrelation among 
nearby features. In this paper we presents simple and effec-
tive algorithm using dynamic Voronoi diagrams and De-
launay triangulations which may be useful for a wide varie-
ty of applications in clustering spatial datasets. We have 
used Voronoi diagram which makes subdivision of the total 
area under consideration into regions. Then each point on 
the plane is assigned to each region individually. This plan-
er distribution of points of the surface into separate region 
is called as voronoi diagram [3]. 

2 PROPOSED METHOD 
2.1 Voronoi Diagram: 
Let S = {K1, . . . . . ,Kn} be a set of n points  in the plane. 
Definition of Voronoi diagram: For any subset S כA of 
parts we define the Voronoi region,V(A), for A to be the set 
of all points K ε RP

2
P such that A is the set of closest sites to K. 

There are 2P

n
P different subsets of S, but only a very few of 

them have a nonempty Voronoi region, V (A). 
In fact, if S has no four cocircular points, then V (A) is emp-
ty for any A having |A| ≥ 4. For each Singleton set, A = 
{KRiR}, V (A) = V ({KRiR}) is nonempty and is often called the 
Voronoi cell associated with site KRiR. We usually abuse nota-
tion slightly and let V (KRiR) = V ({KRi R}). By our definition, V 
(KRiR) is always an open, which defnes V (KRiR) to be a closed 
set that includes its boundary. If A consists of two points, A 
= {KRiR, KRj R} and V (A) is nonempty, then V (A) = V ({KRiR, KRjR}) is 
called a Voronoi edge; it will be a subset of the bisector, 
b(KRiR, KRj R), between KRi R and KRj R . Voronoi edges are open line 
segments (they do not include their end points). If A con-
sists of 3 or more points, then V (A) will be a singlePoint, 
we call such points Voronoi vertices. The Voronoi diagram 
for S, denoted V(S), is defined to be the partition of RP

2
P into 

the regions V (A), for all S כA. The Voronoi diagram is a 
polygonal subdivision, consisting of vertices, edges, and 
(convex) polygonal faces (cells) [11]. 

 

A 
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1) Voronoi Diagram using divide & conquer method: 

Experts have presented the deterministic algorithm for 
constructing the Voronoi diagram in the given N dimension 
plane which is optimal it is of worst case sense. The pro-
posed algorithm was useful in theoretical view just because 
it was the first algorithm & it uses the divide-and-conquer 
method [6]. Divide and Conquer is very primitive tech-
nique for designing efficient algorithms. In this method, the 
problem which we have to solve is divided recursively into 
different-different modules & then the simpler problems 
are solved individually, and the solution of that given prob-
lem is then recoverd by merging all separate smaller prob-
lems. In the divide-and-conquer approach the set of sit is 
split up by a dividing line into parts PL and PR of about 
same sizes. Then, the Voronoi diagram, Vor(PL), of  subset 
PL and Voronoi diagram, Vor(PR), of  subset PRare comput-
ed recursively[2].   

1) Voronoi Diagram: 
INPUT:The number n > 3 of sets and the list 
p=(p1,p2,…..,pn) such that in  non decreasing order with 
respect to Major-axis.      
OUTPUT: VORONOI_DAIGRAM. 
ALGORITHM:  VoronoiDia(P) 

1. Let ‘k’ be the integral part of n/2 and Partition P in-
to two part’s.     

i.e.  PL =(P1,P2,…..,Pk)   and   PR=(Pk+1,Pk+2,…..,Pn).   
  2.   Create the Voronoi _Diagram i.e. Vor(PR) such that 

PR recursively. 
  3.   Create the Voronoi _Diagram i.e.  Vor(PL) such that 

PLrecursively. 
  4.  Merge   Vor(PL) and  Vor(PR) into P {i.e. P = PL + 

PR}. by MERGING ALGORITHM. 
  5.  Return Vor(P)  i.e. VORONOI_DAIGRAM. 
The main thing in the algorithm is to find the line which 

splits the diagram into 2 halves and merging the two halves 
two get original two parts. So if we consider the splitting 
and merging time of that two Voronoi diagram as O(n) and 
the total running time is O(n log n)[5] then the recurrence 
relation  can be formed as       T(n) = 2T (n/2) + O(n). 

1) Merging Voronoi Diagrams: 
This step involves computation of the perpendicular bi-

sector s of parts PL and PRi.e.,B(PL , PR), of all Voronoi edg-
es of Vor(P) that distinguish the parts in PL from regions of 
parts in PR. The idea of collecting two diagram merging 
based on the fact that the edges of B(PL , PR) form a single 
y-monotone polygonal chain. The MERGE VORONOI algo-
rithm runs in O(n) time. 
INPUT:      Voronoi diagrams Vor(PL) and Vor(PR) of parts 
PLandPR  .  
OUTPUT:  Voronoi diagrams for set P = PL + PR  
ALGORITHM: MERGE_VORONOI ( ) 

1.  Generate the Convex hull of PL and PR.  
2.  Find the lower common support line L(PL , 

PR) by Algorithm  Lower Common Support 
i.e. Algo(LCS) 

3.  wo ← the extreme  point at infinity downward 
on perpendicular bisector of sites pl belongs to 
PLand pR belongs to PR . i.e.,  B(PL , PR). i ← 0 

4. While L(PL , PR) is not the upper support  
Repeat  
4.1   i←i+1  
4.2   Find the point of intersection of B(PL, PR) 
with the boundary of V(pL), say aL .  
4.3   Find the point of intersecton of B(PL, PR)  
with the boundary of V(pR), say aR .  
4.4   IF y value of aL is smaller that y value of 
aR. 
THEN 
           wi ←aL 
          pL  ← parts on the other part of the Vo-
ronoi edge containing aL . 
 ELSE  
               wi←aR  
            pR ← parts  on the other part of the Vo-
ronoi edge containing aR. 

5.  m ← i. Wm+1 ←  the point at infinity upward 
on the perpendicular bisector  of pl belongs to 
PLand pR belongs toPR . i.e.,  B(PL , PR).  

6.  Add the polygonal line (w0w1 , w1w2 , . . . , 
w_{m}w_{m+1}), and delete from VorL the 
part to the right of the polygonal line and de-
lete from Vor R from the part to the left polyg-
onal line.Return the resultant Voronoi dia-
gram.  

2) Support line Computation: 
We will get the common support line from MERGE VO-
RONOI algorithm as shown in algorithm LCS. This algo-
rithm has time complexity of O(n). There is an O(log n) al-
gorithm for finding the common support it will not create 
any substantial effect on the overall algorithm so we will 
ignore it. 
Algorithm for finding LOWER COMMON SUPPORT: 
INPUT:  Two Convex polygon CPL and CPR  such that CPL 
is completely left of CPR . 
OUTPUT:  A pair consisting of vertex u belongs to CPL and 
v belongs to CPR such thatL(u, v) forms the lower common 
support of polygons CPL  and CPR.  
ALGORITHM  LCS ( ): 

1. Find the vertex u belongs to CPL with the largest x 
coordinate and the  v belongs to CPR  with the 
smallest x coordinate. 

2. Repeat sub steps 2.1 and 2.2 Alternately.  
           2.1 While vertex next[x] is lower than L(x, y) 

                        Repeat  
                            x←next[x].  

                 2.2 While vertex next[y] is lower than L(x, y) 
                        Repeat 

                          y ← next[y].  
       3. Return L(x, y).  

In this paper, we are formulating a voronoi diagram from 
which the neighbourhood locations can be extracted. The 
voronoi diagram consists of locations along with its neigh-
bouring points. A location has two attributes (object_name, 
instance_name). Here,instance_name itself is the loca-
tion.‘Locations’ refers to the main representative point with 
the help of which voronoi diagram has been drawn. ‘Point’ 
refers to the sub-points which are there in voronoi poly-
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gons. 
Rule for Generating   Neighbourhood Locations:- 
1.Find all the adjacent polygons.The locations represents 
the polygons are taken as neighbourhoods. At this step, we 
eliminate the locations which belong to the same object. For 
eg. If (a1 ,a2)is neighbourhood pair, then we must eliminate 
it because they belong to the same object  A.     
 2. Don’t allow any repetition of pair i.e. (a1,b2) and (b2,a1) 
is not allowed. One of them is eliminated.                                                                                 
 3. Find neighbourhoods according to the above given rules.                                                     
This is the final set of neighbourhoods we get from voronoi 
diagram. 
2.2 Delaunay Triangulation 
A triangulation of S can be said as a Delaunay triangula-
tion, denoted by Del(S), if there does not exist any point 
inside the triangles formed from S. A triangle is called the 
Delaunay triangle if its circumcircle is empty of nodes of S 
inside. It is well known that the Delaunay triangulation Del 
(S) is a planar Euclidean graph K (S)[1].   
Vor (P) is Voronoi dia. Created by set of  n distinct pts. Such 
that P={P1,….,Pn} С R2 (3≤n<∞)                                                       
it satisfy the non-co linearity.[8]                                                                                                                                                                                                            
R={r1,…,rnv} be set of vertices of voronoi and yj1,…,yjkt be 
location vertex of the created pts. whosevoronoi polygons 
share same vertex. 
Sj= {y | y t yjt ;Where   t=1; σt≥ 0; t Є Jk1 } by 
using above equation we get  
D= {S1,…,Snv}. 
If kj=3 for all j Є Jnv; 
We call the set D DELAUNAY TRANGULATION 
Now, we will analyze the neighbourhoods which we can 
get from Delaunay triangles. The most important factor in 
Delaunay diagram is that it is a planar graph.We can get 
triangles of locations. 
These triangles help us in mining information in more ef-
fective way [9]. 
Rules for generating Triangles:- 
1.The locations of  the same triangle are taken as neigh-
bourhoods. At this step, we eliminate the locations which 
belong to the same object. For eg. If (a1 ,a2, a3)is neigh-
bourhood triangle, then we must eliminate it because they 
belong to the same object  A.    But (a1,a2,b2) is allowed. 
2. Don’t allow repeatition of triangular neighbour-
hoods.Foreg. Triangle (a1,a2,b2) and (b2,a1,a2) are not al-
lowed.One of them must be eliminated. 
 
 
 
 

 
The following is the algorithm for Delaunay Diagram. 

Algorithm:- 
1. Take number of points from user in N. 
2.  for  i -> 1 to N 

 2.1.Draw triangle between i  and each point. 
 2.2. Check for intersection between lines. 
 2.3. Take all intersections in intersect[]. 
 2.4.  For j -> 1 to (size of intersect[]). 
           2.4.1.Remove the respective triangles. 
 2.5. End of Loop 

3. End of loop   

2.3 Apriori Algorithm For Finding Frequently Co-
located Points 

The   min-max Apriori algorithm is as follows:- 
1. Take all the transactions in trans[][3]. 
2. Store it in item_count [].Call it C1. 
3. Calculate the support for each item by the formula 

given below. 
Support: The % of relevant data transactions for which 
the pattern is true. 

For ex.-Support (Laptop -> pen drive) = 
 No of transactions containing both laptop & pendrive 
                                     No of total transactions 

4. Now ,find the minimum support  from 
item_count[] by formula: -maximum_count/2. 

5. Eliminate the items which has mininimum support 
and store all other items in prune_item_count[]. 
Call it as L1. 

6. Take combination of length 2 from  
prune_item_count[] without repeatition .  

7. Calaulate the count of each distinct item and store 
it in item_2_count[].Call it as C2. 

8. Calculate the support for each item by the above 
given below. 

9. Now ,find the minimum support  from 
item_2_count[]:- maximum_count/2. 

10. Eliminate the items which has mininimum support 
and store all other items in prune_item_2_count[]. 
Call it as L2. 

11. Generate Rules  from L2. 
12. Calculate confidence for each rule by the following 

formula. 
Confidence: The measure of surety or certainty associated 
with each pattern that we have derived. 

Confidence (Laptop -> pen drive) = 
No of transactions containing both laptop & pendrive 
                No of transactions containing laptop 

13. Now extract the rules which have maximum con-
fidence. 

14.Exit. 
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3 PERFORMANCE ANALYSIS 
3.1 Comparison between Voronoi and Delaunay dia-
gram:- 
We are comparing the information given to us by both the 
diagrams i.e. Voronoi and Delaunay diagram in the form of 
neighbourhood pairs. The neighbourhood pairs we get af-
ter applying       min-max apriory  algorithm are less in 
number  as compared to voronoi diagram neighbour-
hoodssignificantly.It gives us more precise information.For 
decision making, this precise information is important. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.1 Graph for Graph plotting number of  correlation 
pairs given by Voronoi and Delaunay diagram. 
 

 
In fig 4.1, we can see that  for the same set of given 

points , the correlation pairs given by the delaunay diagram 

are much informative  than given by voronoi diagram. The 
correlation pairs given by the voronoi diagram are 23 in 
number. If a decision is to betaken to select one pair there is 
more confusing situation because the output shows large 
number of correlation pairs [10].In correlation pairs after 
applying min- max Apriory algorithm on the triangular 
neighbourhoods of Delaunay diagram,there is more accu-
rate information. As the number of pairs are less i.e.6pairs , 
the decision making process can be more accurate. 

4.CONCLUSION AND FUTURE WORK 
For finding spatial proximity between locations,Delaunay 
diagram gives better results in terms of accuracy and pre-
cise information.It can be preferred over voronoi if we want 
accurate and precise information rather than bulk infor-
mation. 
In future, the temporal correlation between objects can be 
found out if we include the time stamp with each instance 
of the object. We are developing a module for including 
time stamp  as a parameter with each instance which will 
give correlation according to the time constraints we speci-
fy. 
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